Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38337322

RESUMO

Power generation technologies based on water movement and evaporation use water, which covers more than 70% of the Earth's surface and can also generate power from moisture in the air. Studies are conducted to diversify materials to increase power generation performance and validate energy generation mechanisms. In this study, a water-based generator was fabricated by coating cellulose acetate with carbon black. To optimize the generator, Fourier-transform infrared spectroscopy, specific surface area, zeta potential, particle size, and electrical performance analyses were conducted. The developed generator is a cylindrical generator with a diameter of 7.5 mm and length of 20 mm, which can generate a voltage of 0.15 V and current of 82 µA. Additionally, we analyzed the power generation performance using three factors (physical properties, cation effect, and evaporation environment) and proposed an energy generation mechanism. Furthermore, we developed an eco-friendly and low-cost generator using natural fibers with a simple manufacturing process. The proposed generator can contribute to the identification of energy generation mechanisms and is expected to be used as an alternative energy source in the future.

2.
Nat Metab ; 6(2): 343-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351124

RESUMO

The canonical biological function of selenium is in the production of selenocysteine residues of selenoproteins, and this forms the basis for its role as an essential antioxidant and cytoprotective micronutrient. Here we demonstrate that, via its metabolic intermediate hydrogen selenide, selenium reduces ubiquinone in the mitochondria through catalysis by sulfide quinone oxidoreductase. Through this mechanism, selenium rapidly protects against lipid peroxidation and ferroptosis in a timescale that precedes selenoprotein production, doing so even when selenoprotein production has been eliminated. Our findings identify a regulatory mechanism against ferroptosis that implicates sulfide quinone oxidoreductase and expands our understanding of selenium in biology.


Assuntos
Ferroptose , Selênio , Selênio/farmacologia , Selênio/metabolismo , Ubiquinona/farmacologia , Selenoproteínas/metabolismo , Sulfetos , Oxirredutases
3.
Proc Natl Acad Sci U S A ; 120(6): e2216244120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716373

RESUMO

Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO2) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the E. limosum genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in E. limosum. Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO2-H2 conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.


Assuntos
Dióxido de Carbono , Eubacterium , Dióxido de Carbono/metabolismo , Eubacterium/genética , Eubacterium/metabolismo , Processos Autotróficos , Genoma Bacteriano
4.
Sci Data ; 9(1): 197, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538082

RESUMO

The gut microbiota is associated with the health and longevity of the host. A few methods, such as fecal microbiota transplantation and oral administration of probiotics, have been applied to alter the gut microbiome and promote healthy aging. The changes in host microbiomes still remain poorly understood. Here, we characterized both the changes in gut microbial communities and their functional potential derived from colon samples in mouse models during aging. We achieved this through four procedures including co-housing, serum injection, parabiosis, and oral administration of Akkermansia muciniphila as probiotics using bacterial 16 S rRNA sequencing and shotgun metagenomic sequencing. The dataset comprised 16 S rRNA sequencing (36,249,200 paired-end reads, 107 sequencing data) and metagenomic sequencing data (307,194,369 paired-end reads, 109 sequencing data), characterizing the taxonomy of bacterial communities and their functional potential during aging and rejuvenation. The generated data expand the resources of the gut microbiome related to aging and rejuvenation and provide a useful dataset for research on developing therapeutic strategies to achieve healthy active aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , RNA Ribossômico 16S , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Metagenômica , Camundongos , RNA Ribossômico 16S/genética , Rejuvenescimento
5.
PLoS Comput Biol ; 18(5): e1010106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604933

RESUMO

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies.


Assuntos
Cupriavidus necator , Biotecnologia , Dióxido de Carbono/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Engenharia Metabólica , Transcriptoma
6.
Adv Biochem Eng Biotechnol ; 180: 57-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35396935

RESUMO

With a presence of the Wood-Ljungdahl pathway, acetogenic bacteria are capable of converting C1 feedstocks into biomass and various metabolites, receiving industrial interest in microbial production of biochemicals derived from C1 substrates. To understand C1 feedstock fermentation using acetogenic bacteria, most of the studies have focused on revealing their carbon assimilation and energy conservation systems. Despite the determination of the essential mechanisms, a fundamental understanding of acetogenic bacteria and the associated complex regulatory systems remains unclear and is needed for rational strain design. For this purpose, systems biology is a suitable approach for investigating genome, transcription, translation, regulation systems, and metabolic flux, providing a glimpse of the relationship between the genotype and phenotype of the organisms. This chapter will cover recent systems biology applications on acetogenic bacteria and discuss the cellular responses during C1 feedstock fermentation along with the regulatory systems that orchestrate cellular processes.


Assuntos
Acetatos , Biologia de Sistemas , Acetatos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Fermentação
7.
Metab Eng ; 72: 215-226, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364280

RESUMO

Acetogenic bacteria demonstrate industrial potential for utilizing carbon dioxide (CO2) for biochemical production using the Wood-Ljungdahl pathway. However, the metabolic engineering of acetogenic bacteria has been hampered by the limited number of available genetic bioparts for gene expression. Here, we integrated RNA sequencing, ribosome profiling, differential RNA sequencing, and RNA 3'-end sequencing results of Eubacterium limosum to establish genetic bioparts, such as promoters, 5' untranslated regions, and transcript terminators, to regulate transcriptional and translational expression of genes composing of biosynthetic pathways. In addition, a transformation method for the strain was developed to efficiently deliver the obtained genetic bioparts into cells, resulting in a transformation efficiency of 2.5 × 105 CFU/µg DNA. Using this method, the genetic bioparts were efficiently introduced, and their strengths were measured, which were then applied to optimize the heterologous expression of acetolactate synthase and acetolactate decarboxylase for non-native biochemical acetoin production. The strategy developed in this study is the first report on integrating multi-omics data for biopart development of CO2 or syngas utilizing acetogenic bacteria, which lays a foundation for the efficient production of biochemicals from CO2 or syngas as a carbon feedstock under autotrophic growth conditions.


Assuntos
Dióxido de Carbono , Eubacterium , Processos Autotróficos , Dióxido de Carbono/metabolismo , Eubacterium/genética , Eubacterium/metabolismo , Expressão Gênica
8.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057117

RESUMO

Herein, a facile fabrication process of ZnO-ZnFe2O4 hollow nanofibers through one-needle syringe electrospinning and the following calcination process is presented. The various compositions of the ZnO-ZnFe2O4 nanofibers are simply created by controlling the metal precursor ratios of Zn and Fe. Moreover, the different diffusion rates of the metal oxides and metal precursors generate a hollow nanostructure during calcination. The hollow structure of the ZnO-ZnFe2O4 enables an enlarged surface area and increased gas sensing sites. In addition, the interface of ZnO and ZnFe2O4 forms a p-n junction to improve gas response and to lower operation temperature. The optimized ZnO-ZnFe2O4 has shown good H2S gas sensing properties of 84.5 (S = Ra/Rg) at 10 ppm at 250 °C with excellent selectivity. This study shows the good potential of p-n junction ZnO-ZnFe2O4 on H2S detection and affords a promising sensor design for a high-performance gas sensor.

9.
Microbiome ; 9(1): 240, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906228

RESUMO

BACKGROUND: The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging. RESULTS: Here, we report the changes in gut microbial communities and their functions in mouse models during ageing and three rejuvenation procedures including co-housing, serum-injection and parabiosis. Our results showed that the compositional structure and gene abundance of the intestinal microbiota changed dynamically during the ageing process. Through the three rejuvenation procedures, we observed that the microbial community and intestinal immunity of aged mice were comparable to those of young mice. The results of metagenomic data analysis underscore the importance of the high abundance of Akkermansia and the butyrate biosynthesis pathway in the rejuvenated mouse group. Furthermore, oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span, as evidenced by the frailty index and restoration of muscle atrophy. CONCLUSIONS: In conclusion, the changes in key microbial communities and their functions during ageing and three rejuvenation procedures, and the increase in the healthy lifespan of aged mice by oral administration of Akkermansia. Our results provide a rationale for developing therapeutic strategies to achieve healthy active ageing. Video abstract.


Assuntos
Microbioma Gastrointestinal , Envelhecimento Saudável , Microbiota , Envelhecimento , Animais , Microbioma Gastrointestinal/genética , Camundongos , Rejuvenescimento
10.
Metab Eng ; 68: 174-186, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655791

RESUMO

Bacteroides thetaiotaomicron represents a major symbiont of the human gut microbiome that is increasingly viewed as a promising candidate strain for microbial therapeutics. Here, we engineer B. thetaiotaomicron for heterologous production of non-native butyrate as a proof-of-concept biochemical at therapeutically relevant concentrations. Since B. thetaiotaomicron is not a natural producer of butyrate, we heterologously expressed a butyrate biosynthetic pathway in the strain, which led to the production of butyrate at the final concentration of 12 mg/L in a rich medium. Further optimization of butyrate production was achieved by a round of metabolic engineering guided by an expanded genome-scale metabolic model (GEM) of B. thetaiotaomicron. The in silico knock-out simulation of the expanded model showed that pta and ldhD were the potent knock-out targets to enhance butyrate production. The maximum titer and specific productivity of butyrate in the pta-ldhD double knockout mutant increased by nearly 3.4 and 4.8 folds, respectively. To our knowledge, this is the first engineering attempt that enabled butyrate production from a non-butyrate producing commensal B. thetaiotaomicron. The study also highlights that B. thetaiotaomicron can serve as an effective strain for live microbial therapeutics in human.


Assuntos
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Butiratos , Humanos , Simbiose
11.
PLoS Genet ; 17(9): e1009821, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570751

RESUMO

RNA sequencing techniques have enabled the systematic elucidation of gene expression (RNA-Seq), transcription start sites (differential RNA-Seq), transcript 3' ends (Term-Seq), and post-transcriptional processes (ribosome profiling). The main challenge of transcriptomic studies is to remove ribosomal RNAs (rRNAs), which comprise more than 90% of the total RNA in a cell. Here, we report a low-cost and robust bacterial rRNA depletion method, RiboRid, based on the enzymatic degradation of rRNA by thermostable RNase H. This method implemented experimental considerations to minimize nonspecific degradation of mRNA and is capable of depleting pre-rRNAs that often comprise a large portion of RNA, even after rRNA depletion. We demonstrated the highly efficient removal of rRNA up to a removal efficiency of 99.99% for various transcriptome studies, including RNA-Seq, Term-Seq, and ribosome profiling, with a cost of approximately $10 per sample. This method is expected to be a robust method for large-scale high-throughput bacterial transcriptomic studies.


Assuntos
Bactérias/genética , Custos e Análise de Custo , RNA Bacteriano/isolamento & purificação , RNA Ribossômico/isolamento & purificação , Transcriptoma , RNA Bacteriano/genética , RNA Ribossômico/genética , Análise de Sequência de RNA/métodos
12.
mSystems ; 6(4): e0069621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34313456

RESUMO

Acetogens synthesize acetyl-CoA via the CO2-fixing Wood-Ljungdahl pathway. Despite their ecological and biotechnological importance, their translational regulation of carbon and energy metabolisms remains unclear. Here, we report how carbon and energy metabolisms in the model acetogen Acetobacterium woodii are translationally controlled under different growth conditions. Data integration of genome-scale transcriptomic and translatomic analyses revealed that the acetogenesis genes, including those of the Wood-Ljungdahl pathway and energy metabolism, showed changes in translational efficiency under autotrophic growth conditions. In particular, genes encoding the Wood-Ljungdahl pathway are translated at similar levels to achieve efficient acetogenesis activity under autotrophic growth conditions, whereas genes encoding the carbonyl branch present increased translation levels in comparison to those for the methyl branch under heterotrophic growth conditions. The translation efficiency of genes in the pathways is differentially regulated by 5' untranslated regions and ribosome-binding sequences under different growth conditions. Our findings provide potential strategies to optimize the metabolism of syngas-fermenting acetogenic bacteria for better productivity. IMPORTANCE Acetogens are capable of reducing CO2 to multicarbon compounds (e.g., ethanol or 2,3-butanediol) via the Wood-Ljungdahl pathway. Given that protein synthesis in bacteria is highly energy consuming, acetogens living at the thermodynamic limit of life are inevitably under translation control. Here, we dissect the translational regulation of carbon and energy metabolisms in the model acetogen Acetobacterium woodii under heterotrophic and autotrophic growth conditions. The latter may be experienced when acetogen is used as a cell factory that synthesizes products from CO2 during the gas fermentation process. We found that the methyl and carbonyl branches of the Wood-Ljungdahl pathway are activated at similar translation levels during autotrophic growth. Translation is mainly regulated by the 5'-untranslated-region structure and ribosome-binding-site sequence. This work reveals novel translational regulation for coping with autotrophic growth conditions and provides the systematic data set, including the transcriptome, translatome, and promoter/5'-untranslated-region bioparts.

13.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619098

RESUMO

Acetogenic bacteria use cellular redox energy to convert CO2 to acetate using the Wood-Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H2 as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum The hybrid system converts CO2 into acetate without the need for additional energy sources, such as H2, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO2, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO2 fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.


Assuntos
Acetatos/química , Proteínas de Bactérias/metabolismo , Compostos de Cádmio/química , Dióxido de Carbono/química , Clostridium/metabolismo , Elétrons , Nanopartículas/química , Sulfetos/química , Acetatos/metabolismo , Processos Autotróficos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Compostos de Cádmio/metabolismo , Dióxido de Carbono/metabolismo , Clostridium/genética , Clostridium/efeitos da radiação , Coenzimas/química , Coenzimas/metabolismo , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Luz , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Nanopartículas/metabolismo , Fotossíntese/genética , Sulfetos/metabolismo , Transcrição Gênica
14.
Sci Data ; 8(1): 51, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563990

RESUMO

Acetogens are anaerobic bacteria that utilise gaseous feedstocks such as carbon monoxide (CO) and carbon dioxide (CO2) to synthesise biomass and various metabolites via the energetically efficient Wood-Ljungdahl pathway. Because of this pathway, acetogens have been considered as a novel platform to produce biochemicals from gaseous feedstocks, potentially replacing the conventional thermochemical processes. Despite their advantages, a lack of systematic understanding of the transcriptional and translational regulation in acetogens during autotrophic growth limits the rational strain design to produce the desired products. To overcome this problem, we presented RNA sequencing and ribosome profiling data of four acetogens cultivated under heterotrophic and autotrophic conditions, providing data on genome-scale transcriptional and translational responses of acetogens during CO2 fixation. These data facilitate the discovery of regulatory elements embedded in their genomes, which could be utilised to engineer strains to achieve better growth and productivity. We anticipate that these data will expand our understanding of the processes of CO2 fixation and will help in the designing of strains for the desired biochemical production.


Assuntos
Processos Autotróficos , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Processos Heterotróficos , Transcriptoma , Ciclo do Carbono , RNA-Seq
15.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076477

RESUMO

Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.


Assuntos
Acetatos/metabolismo , Engenharia Genética/métodos , Microbiologia Industrial/métodos , Gás Natural/microbiologia , Biodegradação Ambiental , Clostridium/genética , Clostridium/metabolismo , Biologia Sintética/métodos
16.
Front Microbiol ; 11: 402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218779

RESUMO

Acetogens are naturally capable of metabolizing carbon monoxide (CO), a component of synthesis gas (syngas), for autotrophic growth in order to produce biomass and metabolites such as acetyl-CoA via the Wood-Ljungdahl pathway. However, the autotrophic growth of acetogens is often inhibited by the presence of high CO concentrations because of CO toxicity, thus limiting their biosynthetic potential for industrial applications. Herein, we implemented adaptive laboratory evolution (ALE) for growth improvement of Eubacterium limosum ATCC 8486 under high CO conditions. The strain evolved under syngas conditions with 44% CO over 150 generations, resulting in a significant increased optical density (600 nm) and growth rate by 2.14 and 1.44 folds, respectively. In addition, the evolved populations were capable of proliferating under CO concentrations as high as 80%. These results suggest that cell growth is enhanced as beneficial mutations are selected and accumulated, and the metabolism is altered to facilitate the enhanced phenotype. To identify the causal mutations related to growth improvement under high CO concentrations, we performed whole genome resequencing of each population at 50-generation intervals. Interestingly, we found key mutations in CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex coding genes, acsA and cooC. To characterize the mutational effects on growth under CO, we isolated single clones and confirmed that the growth rate and CO tolerance level of the single clone were comparable to those of the evolved populations and wild type strain under CO conditions. Furthermore, the evolved strain produced 1.34 folds target metabolite acetoin when compared to the parental strain while introducing the biosynthetic pathway coding genes to the strains. Consequently, this study demonstrates that the mutations in the CODH/ACS complex affect autotrophic growth enhancement in the presence of CO as well as the CO tolerance of E. limosum ATCC 8486.

17.
Proc Natl Acad Sci U S A ; 117(13): 7516-7523, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170009

RESUMO

Among CO2-fixing metabolic pathways in nature, the linear Wood-Ljungdahl pathway (WLP) in phylogenetically diverse acetate-forming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO2 to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.


Assuntos
Aminoácido Oxirredutases/metabolismo , Aminometiltransferase/metabolismo , Processos Autotróficos/fisiologia , Complexos Multienzimáticos/metabolismo , Acetilcoenzima A/metabolismo , Aminoácido Oxirredutases/genética , Aminometiltransferase/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Redes e Vias Metabólicas , Complexos Multienzimáticos/genética , Família Multigênica , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
18.
J Microbiol Biotechnol ; 30(4): 505-514, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31986560

RESUMO

The symbiotic nature of the relationship between algae and marine bacteria is well-studied among the complex microbial interactions. The mutual profit between algae and bacteria occurs via nutrient and vitamin exchange. It is necessary to analyze the genome sequence of a bacterium to predict its symbiotic relationships. In this study, the genome of a marine bacterium, Pseudoruegeria sp. M32A2M, isolated from the south-eastern isles (GeoJe-Do) of South Korea, was sequenced and analyzed. A draft genome (91 scaffolds) of 5.5 Mb with a DNA G+C content of 62.4% was obtained. In total, 5,101 features were identified from gene annotation, and 4,927 genes were assigned to functional proteins. We also identified transcription core proteins, RNA polymerase subunits, and sigma factors. In addition, full flagella-related gene clusters involving the flagellar body, motor, regulator, and other accessory compartments were detected even though the genus Pseudoruegeria is known to comprise non-motile bacteria. Examination of annotated KEGG pathways revealed that Pseudoruegeria sp. M32A2M has the metabolic pathways for all seven vitamin Bs, including thiamin (vitamin B1), biotin (vitamin B7), and cobalamin (vitamin B12), which are necessary for symbiosis with vitamin B auxotroph algae. We also identified gene clusters for seven secondary metabolites including ectoine, homoserine lactone, beta-lactone, terpene, lasso peptide, bacteriocin, and nonribosomal proteins.


Assuntos
Vias Biossintéticas/genética , Rhodobacteraceae/genética , Metabolismo Secundário/genética , Complexo Vitamínico B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Composição de Bases , DNA Bacteriano , Genoma Bacteriano/genética , Família Multigênica , Filogenia , República da Coreia , Rhodobacteraceae/classificação , Rhodobacteraceae/metabolismo , Análise de Sequência de DNA
19.
ACS Appl Mater Interfaces ; 11(50): 47015-47024, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31725260

RESUMO

We present a thermochemical hydrogen (TCH) gas sensor fabricated with Pt-decorated exfoliated graphene sheets and a tellurium nanowire-based thermoelectric (TNTE) layer operating at room temperature in wet air. The sensor device was able to detect 50 ppm to 3% of hydrogen gas within several seconds (response/recovery times of 6/5.1 s at 4000 ppm of hydrogen gas) at room temperature due to the relatively high surface area of homogeneously dispersed Pt nanocrystals (∼8 nm) decorated on graphene sheets and the excellent Seebeck coefficient (428 µV/K) of the TNTE layer. Furthermore, it was observed that the effect of the relative humidity on sensing properties was greatly minimized by incorporating Pt-decorated graphene sheets. These results indicate that our device has great potential as a low power consumption gas sensor for IoTs.

20.
ACS Synth Biol ; 8(9): 2059-2068, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31373788

RESUMO

Eubacterium limosum is one of the important bacteria in C1 feedstock utilization as well as in human gut microbiota. Although E. limosum has recently garnered much attention and investigation on a genome-wide scale, a bottleneck for systematic engineering in E. limosum is the lack of available genetic tools and an efficient genome editing platform. To overcome this limitation, we here report expanded genetic tools and the CRISPR-Cas9 system. We have developed an inducible promoter system that enables implementation of the CRISPR-Cas9 system to precisely manipulate target genes of the Wood-Ljungdahl pathway with 100% efficiency. Furthermore, we exploited the effectiveness of CRISPR interference to reduce the expression of target genes, exhibiting substantial repression of several genes in the Wood-Ljungdahl pathway and fructose-PTS system. These expanded genetic tools and CRISPR-Cas9 system comprise powerful and widely applicable genetic tools to accelerate functional genomic study and genome engineering in E. limosum.


Assuntos
Sistemas CRISPR-Cas/genética , Eubacterium/genética , Edição de Genes/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Eubacterium/efeitos dos fármacos , Eubacterium/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...